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Abstract: The goal of this paper is to show that the process of deriving of new vague functional dependencies from
given ones may be automated. To achieve this, we join fuzzy formulas to vague functional dependencies. Thus, to
prove that a vague functional dependency follows from a set of vague functional dependencies, becomes the same
as to prove that the corresponding fuzzy formula is valid whenever the fuzzy formulas from the corresponding set
of fuzzy formulas are valid.
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1 Preliminaries
Let R (A1, A2, ..., An) be a relation scheme on do-
mains U1, U2,..., Un, where Ai is an attribute on the
universe of discourse Ui, i ∈ {1, 2, ..., n} = I .

Suppose that V (Ui) is the family of all vagues
sets in Ui, i ∈ I .

Here, we say that Vi is a vague set in Ui, if

Vi = {〈u, [tVi (u) , 1− fVi (u)]〉 : u ∈ Ui} ,

where tVi : Ui→ [0, 1], fVi : Ui→ [0, 1] are functions
such that tVi (u) + fVi (u) ≤ 1 for all u ∈ Ui.

We also say that [tVi (u) , 1− fVi (u)] ⊆ [0, 1] is
the vague value joined to u ∈ Ui.

A vague relation instance r onR (A1, A2, ..., An)
is a subset of the cross product V (U1) × V (U2) × ...
× V (Un).

A tuple t of r is denoted by

(t [A1] , t [A2] , ..., t [An]) .

Here, we consider the vague set t [Ai] as the value
of the attribute Ai on t.

Let V ag (Ui) be the set of all vague values asso-
ciated to the elements ui ∈ Ui, i ∈ I .

A similarity measure on V ag (Ui) is a map-
ping SEi : V ag (Ui) × V ag (Ui) → [0, 1], such
that SEi (x, x) = 1, SEi (x, y) = SEi (y, x), and
SEi (x, z) ≥

maxy∈V ag(Ui) (min (SEi (x, y) , SEi (y, z))) for all
x, y, z ∈ V ag (Ui).

Suppose that SEi is a similarity measure on
V ag (Ui), i ∈ I .

Let

Ai = {〈u, [tAi (u) , 1− fAi (u)]〉 : u ∈ Ui}
=
{
aiu : u ∈ Ui

}
,

Bi = {〈u, [tBi (u) , 1− fBi (u)]〉 : u ∈ Ui}
=
{
biu : u ∈ Ui

}
be two vague sets in Ui.

The similarity measure SE (Ai, Bi) between the
vague sets Ai and Bi is given by

SE (Ai, Bi)

=min
{

min
aiu∈Ai

{
max
biu∈Bi

{
SEi

(
[tAi (u) , 1− fAi (u)] ,

[tBi (u) , 1− fBi (u)]
)}}

,

min
biu∈Bi

{
max
aiu∈Ai

{
SEi

(
[tBi (u) , 1− fBi (u)] ,

[tAi (u) , 1− fAi (u)]
)}}}

.

Now, if r is a vague relation instance on
R (A1, A2, ..., An), t1 and t2 are any two tuples in r,
and X is a subset of {A1, A2, ..., An}, then, the sim-
ilarity measure SEX (t1, t2) between tuples t1 and t2
on the attribute set X is defined by
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SEX (t1, t2) = min
A∈X
{SE (t1 [A] , t2 [A])} .

For various definitions of similarity measures,
see, [13], [5], [4], [11] and [12].

2 Vague functional dependencies
In [10], we introduced a new definition of vague func-
tional dependencies.

Thus, ifX and Y are subsets of {A1, A2, ..., An},
and θ ∈ [0, 1] is a number, then, the vague relation
instance r on R (A1, A2, ..., An) is said to satisfy the

vague functional dependency X θ−→V Y , if for every
pair of tuples t1 and t2 in r,

SEY (t1, t2) ≥ min {θ, SEX (t1, t2)} .

Here, we write X →V Y instead of X θ−→V Y if θ
= 1.

θ is called the linguistic strength of the vague
functional dependencyX θ−→V Y (see, [20] in the case
of fuzzy functional dependencies).

For various definitions of vague functional depen-
dencies, see, [13], [16] and [22].

3 Inference rules
The following rules are the main inference rules for
vague functional dependencies described above (see,
[10]).

VF1 Inclusive rule for VFDs: If X θ1−→V Y

holds, and θ1 ≥ θ2, then X θ2−→V Y holds.

VF2 Reflexive rule for VFDs: IfX ⊇ Y , thenX
→V Y holds.

VF3 Augmentation rule for VFDs: If X θ−→V Y

holds, then X ∪ Z θ−→V Y ∪ Z holds.

VF4 Transitivity rule for VFDs: If X θ1−→V Y

and Y θ2−→V Z hold true, then X
min(θ1,θ2)→ V Z

holds true.

The following rules are additional inference rules
for vague functional dependencies.

VF5 Union rule for VFDs: If X θ1−→V Y and

X
θ2−→V Z hold true, then X

min(θ1,θ2)→ V Y ∪ Z
holds also true.

VF6 Pseudo-transitivity rule for VFDs: If X
θ1−→V Y and W ∪ Y θ2−→V Z hold true, then W ∪
X

min(θ1,θ2)→ V Z holds true.

VF7 Decomposition rule for VFDs: If X θ−→V Y

holds, and Z ⊆ Y , then X θ−→V Z also holds.

The fact that the rules VF5-VF7 are additional in-
ference rules, means that these rules follow from the
rules VF1-VF4.

According to Theorems 4 and 5 in [10], the infer-
ence rules VF1-VF7 are sound.

This, in the case of the inference rule VF1, for
example, means that r satisfies X θ2−→V Y , if r is a
vague relation instance on R (A1, A2, ..., An) which

satisfies the vague functional dependency X θ1−→V Y .

4 Completeness
Let R (A1, A2, ..., An) be a relation scheme on do-
mains U1, U2,..., Un, where Ai is an attribute on the
universe of discourse Ui, i ∈ I .

By Theorem 7 in [10], the set
{V F1, V F2, V F3, V F4} is complete set.

This means that there exists a vague relation in-
stance r∗ on R (A1, A2, ..., An) (r∗ is denoted by r

in [10]), such that r∗ satisfies A 1θ→V B if A 1θ→V

B belongs to V+, and violates X
θ→V Y , where

X
θ→V Y is some vague functional dependency on

{A1, A2, ..., An} which is not an element of the clo-
sure V+ of V .

The closure V+ of V is the set of all vague func-
tional dependencies that can be derived from V by re-
peated applications of the inference rules VF1-VF4,
where V is some set of vague functional dependencies
on {A1, A2, ..., An}.

In [10], r∗ = {t1, t2} is given by Table I.

Table 1:
attributes of X+ (θ,V) other attributes

t1 V1, V1, ..., V1 V1, V1, ..., V1
t2 V1, V1, ..., V1 V2, V2, ..., V2

X+ (θ,V) is the closure of X with respect to V ,
i.e., X+ (θ,V) is the set of attributes A ∈
{A1, A2, ..., An}, such that X θ−→V A belongs to V+.
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For the sake of simplicity it is assumed that U1 =
U2 = ... = Un = {u} = U .

The vagues sets V1 and V2 in U are given by

V1 = {〈u, [tV1 (u) , 1− fV1 (u)]〉 : u ∈ U}
= {〈u, [tV1 (u) , 1− fV1 (u)]〉} = {〈u, a〉}

and

V2 = {〈u, [tV2 (u) , 1− fV2 (u)]〉 : u ∈ U}
= {〈u, [tV2 (u) , 1− fV2 (u)]〉} = {〈u, b〉} .

It is assumed that SE (a, b) = θ
′
.

θ
′ ∈
(
θ
′′
, θ
)

is fixed, where

θ
′′
= max

A
1θ−→V B∈V+ : 1θl(V)<θ

{1θl (V)} .

Here, 1θl (V) denotes the limit strength of the de-

pendency A 1θ−→V B with respect to V , i.e., 1θl (V)
belongs to [0, 1], A 1θl(V)→ V B belongs to V+, and θ2
≤ 1θl (V) for each A θ2−→V B that belongs to V+.

5 Fuzzy implications
Recall the following definitions (see, e.g., [19]).

A mapping N : [0, 1]→ [0, 1] is a fuzzy negation
if N (0) = 1, N (1) = 0, and N (x) ≥ N (y) for x ≤
y.

A mapping C : [0, 1]2 → [0, 1] is a conjunction
on the unit interval if C (0, 0) = C (0, 1) = C (1, 0)
= 0, C (1, 1) = 1, and C (x, z) ≤ C (y, z), C (z, x) ≤
C (z, y) for x ≤ y.

A mapping T : [0, 1]2 → [0, 1] is a triangular
norm (t-norm for short), if T (x, 1) = x, T (x, y)
= T (y, x), T (x, T (y, z)) = T (T (x, y) , z), and
T (x, y) ≤ T (x, z) for y ≤ z.

Note that t-norm is a conjunction on the unit in-
terval.

A mapping S : [0, 1]2 → [0, 1] is a triangu-
lar co-norm (t-co-norm for short), if S (x, 0) = x,
S (x, y) = S (y, x), S (x, S (y, z)) = S (S (x, y) , z),
and S (x, y) ≤ S (x, z) for y ≤ z.

As in the case of t-norms, the disjunction in fuzzy
logic is often modeled by t-co-norms.

A mapping I : [0, 1]2 → [0, 1] is a fuzzy implica-
tion if I (0, 0) = I (0, 1) = I (1, 1) = 1, and I (1, 0)
= 0.

S-implications are the short for strong implica-
tions.

An S-implication is generated from a fuzzy nega-
tion and a t-co-norm. The idea stems from the propo-
sition in classical binary logic:

(p⇒ q)⇔ (¬p ∨ q) .

Thus, an S-implication is defined by

I (x, y) = S (N (x) , y) ,

x, y ∈ [0, 1], where S is a t-co-norm, andN is a fuzzy
negation.

R-implications are short for residual implica-
tions.

AnR-implication is generated from a conjunction
on the unit interval. The idea comes from the equality
in classical set theory:

(X \A) ∪B = X \ (A \B) =
⋃

A∩Z⊆B
Z.

Hence, an R-implication is defined by

I (x, y) = sup {t ∈ [0, 1] : C (x, t) ≤ y} ,

x, y ∈ [0, 1], where C is a conjunction on the unit in-
terval.

QL-implications are the short for quantum logic
implications.

A QL-implication is generated from a strong
fuzzy negation, a t-co-norm, and a t-norm.

The idea follows from the equivalency in classical
binary logic:

(p⇒ q)⇔ (¬p ∨ (p ∧ q)) .

Consequently, a QL-implication is defined by

I (x, y) = S (N (x) , T (x, y)) ,

x, y ∈ [0, 1], where S is a t-co-norm, N is a strong
fuzzy negation, and T is a T -norm.

In this paper we shall apply the following opera-
tors:

TM (x, y) =min {x, y} ,
SM (x, y) =max {x, y} ,
IL (x, y) =min {1− x+ y, 1} .

(1)
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TM is the minimum t-norm, SM is the maximum
t-co-norm, and IL is the Lukasiewicz fuzzy implica-
tion.

Note that the Lukasiewicz fuzzy implication IL
is quite general fuzzy implication. Namely, it is an
S-implication since

IL (x, y) = SL (N0 (x) , y) ,

for N0 (x) = 1 − x, and SL (x, y) = min {x+ y, 1}.
IL is an R-implication since

IL (x, y) = sup {t ∈ [0, 1] : TL (x, y) ≤ y}

for TL (x, y) = max {x+ y − 1, 0}.
Finally, IL is a QL-implication since

IL (x, y) = SL (N0 (x) , TM (x, y)) .

For various works on S, R and QL-implications,
see, [1], [2], [14], [21], [18], [15], [17].

For detailed study on fuzzy implications, we refer
to [3].

6 Valuations
Let R (A1, A2, ..., An) be a relation scheme on do-
mains U1, U2,..., Un, where Ai is an attribute on the
universe of discourse Ui, i ∈ I .

Let r = {t1, t2} be any two-element vague rela-
tion instance on R (A1, A2, ..., An), and β ∈ [0, 1].

Suppose that SEi is a similarity measure on
V ag (Ui), i ∈ I .

Let Ak ∈ {A1, A2, ..., An}.
Since the values t1 [Ak] and t2 [Ak] of the at-

tribute Ak on tuples t1 and t2, respectively, are vague
sets in Uk, we may write

t1 [Ak]

=
{〈
u,
[
tt1[Ak] (u) , 1− ft1[Ak] (u)

]〉
: u ∈ Uk

}
= {〈u, u1〉 : u ∈ Uk}
=
{
a1u : u ∈ Uk

}
,

t2 [Ak]

=
{〈
u,
[
tt2[Ak] (u) , 1− ft2[Ak] (u)

]〉
: u ∈ Uk

}
= {〈u, u2〉 : u ∈ Uk}
=
{
a2u : u ∈ Uk

}
.

Now, we are free to calculate the similarity mea-
sure SE (t1 [Ak] , t2 [Ak]) between the vague sets
t1 [Ak] and t2 [Ak].

We have,

SE (t1 [Ak] , t2 [Ak])

=min
{

min
a1u∈t1[Ak]

{
max

a2u∈t2[Ak]

{
SEk

(
u1, u2

)}}
,

min
a2u∈t2[Ak]

{
max

a1u∈t1[Ak]

{
SEk

(
u2, u1

)}}}
.

It is now straight forward to check if
SE (t1 [Ak] , t2 [Ak]) ≥ β or SE (t1 [Ak] , t2 [Ak]) <
β.

In the first resp. the second case, we may put
ir,β (Ak) to be some value in the interval

(
1
2 , 1
]

resp.[
0, 12
]
.

Obviously, the value ir,β (Ak) ∈ [0, 1] depends on
r and β.

Actually, each time we have a two-element vague
relation instance r on R (A1, A2, ..., An), and a num-
ber β ∈ [0, 1], we are able to define the values
ir,β (Ak) ∈ [0, 1], k ∈ {1, 2, ..., n}.

Thus, we introduce a valuation joined to r and β,
as a mapping ir,β : {A1, A2, ..., An} → [0, 1], such
that

ir,β (Ak) >
1

2
if SE (t1 [Ak] , t2 [Ak]) ≥ β,

ir,β (Ak) ≤
1

2
if SE (t1 [Ak] , t2 [Ak]) < β,

k ∈ {1, 2, ..., n}.
Since ir,β (Ak) ∈ [0, 1] for k ∈ {1, 2, ..., n}, it fol-

lows that the attributes Ak, k ∈ {1, 2, ..., n} become
fuzzy formulas with respect to ir,β .

Let Ai, Aj ∈ {A1, A2, ..., An}.
We define the fuzzy formulas: Ai ∧ Aj , Ai ∨ Aj ,

Ai⇒ Aj with respect to ir,β by putting

ir,β (Ai ∧Aj) =min {ir,β (Ai) , ir,β (Aj)} ,
ir,β (Ai ∨Aj) =max {ir,β (Ai) , ir,β (Aj)} ,

ir,β (Ai ⇒ Aj)

=min {1− ir,β (Ai) + ir,β (Aj) , 1} .

According to (1), these definitions make sense.
Thus, Ai ∧ Aj , Ai ∨ Aj , and Ai ⇒ Aj become

fuzzy formulas with respect to ir,β .
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Consequently, if Ai, Aj , Ak ∈ {A1, A2, ..., An},
then Ai ⇒ (Aj ∧Ak), for example, becomes a fuzzy
formula with respect to ir,β , since

ir,β (Ai ⇒ (Aj ∧Ak))
=min {1− ir,β (Ai) + ir,β (Aj ∧Ak) , 1} ,

and Ai, Aj ∧ Ak are already fuzzy formulas with re-
spect to ir,β .

In particular, ∧A∈XA and (∧A∈XA)⇒
(∧B∈YB) become fuzzy formulas with respect to ir,β ,
whereX and Y are some subsets of {A1, A2, ..., An}.

Through the rest of the paper, we shall assume
that each time some r = {t1, t2} and some β ∈ [0, 1]
are given, the fuzzy formula

(∧A∈XA)⇒ (∧B∈YB)

with respect to ir,β , is joined to X θ→V Y , where X
θ→V Y is a vague functional dependency on
{A1, A2, ..., An}.

7 Main result
Theorem 1. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an
attribute on the universe of discourse Ui, i ∈ I . Let
V+ be the closure of V , where V is some set of vague
functional dependencies on {A1, A2, ..., An}. Sup-

pose that X θ→V Y is some vague functional de-
pendency on {A1, A2, ..., An} which is not an ele-
ment of V+. Let r∗ be a vague relation instance
on R (A1, A2, ..., An) joined to V+ and X

θ→V Y
(in the way described above). Then, there exists
a two-element vague relation instance s ⊆ r∗ on
R (A1, A2, ..., An), such that s satisfies A 1θ→V B if

A 1θ→V B belongs to V+, and violates X θ→V Y .

Proof. Since r∗ is a two-element vague relation in-
stance on R (A1, A2, ..., An) such that r∗ satisfies A
1θ→V B ifA 1θ→V B belongs to V+, and violatesX θ→V

Y , it is enough to take s = r∗.
This completes the proof.

Theorem 2. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an
attribute on the universe of discourse Ui, i ∈ I . Let

C be some set of vague functional dependencies on
{A1, A2, ..., An}. Suppose that c is some vague func-
tional dependency on {A1, A2, ..., An}. The following
two conditions are equivalent:

(a) Any vague relation instance on
R (A1, A2, ..., An) which satisfies all dependencies in
C, satisfies the dependency c.

(b) Any two-element vague relation instance on
R (A1, A2, ..., An) which satisfies all dependencies in
C, satisfies the dependency c.

Proof. (a) ⇒ (b) Suppose that the condition (a) is
satisfied.

Let r be any two-element vague relation instance
on R (A1, A2, ..., An), such that r satisfies A 1θ→V B

if A 1θ→V B belongs to C.
Since (a) holds true for any vague relation in-

stance on R (A1, A2, ..., An) which satisfies all de-
pendencies in C, it follows that (a) particularly holds
true for the vague relation instance r.

Therefore, r satisfies c, i.e., the condition (b) is
satisfied.

(b)⇒ (a) Suppose that the condition (b) is satis-
fied.

Moreover, suppose that the condition (a) is not
satisfied.

It follows that there is a vague relation instance r
on R (A1, A2, ..., An) , such that r satisfies A 1θ→V B

if A 1θ→V B belongs to C, and violates c.
Suppose that c ∈ C+, where C+ is the closure of

C.
Since C+ is the set of all vague functional depen-

dencies on {A1, A2, ..., An} that can be derived from
C by repeated applications of the inference rules VF1-
VF4, and the inference rules VF1-VF4 are sound by
[10, Th. 4], the fact that r satisfies A 1θ→V B if A 1θ→V

B belongs to C yields that r satisfies A 1θ→V B if A
1θ→V B belongs to C+.

Consequently, r satisfies c.
This is a contradiction.
We conclude, c /∈ C+.
Since c /∈ C+, we may, reasoning as earlier, join

some vague relation instance r∗ onR (A1, A2, ..., An)
to C+ and c.

By Theorem 1, there exists a two-element vague
relation instance s ⊆ r∗ on R (A1, A2, ..., An), such

that s satisfies A 1θ→V B if A 1θ→V B belongs to C+,
and violates c.

Since C ⊆ C+, it follows that s satisfies A 1θ→V

B if A 1θ→V B belongs to C, and violates c.
This contradicts the fact that the condition (b) is

satisfied.
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Hence, the condition (a) is satisfied.
This completes the proof.

The following theorem holds true.

Theorem 3. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an
attribute on the universe of discourse Ui, i ∈ I . Let
C be some set of vague functional dependencies on
{A1, A2, ..., An}. Suppose that X θ→V Y is some
vague functional dependency on {A1, A2, ..., An}.
The following two conditions are equivalent:

(a) Any two-element vague relation instance on
R (A1, A2, ..., An) which satisfies all dependencies in

C, satisfies the dependency X θ→V Y .
(b) Let r be any two-element vague relation in-

stance on R (A1, A2, ..., An), and β ∈ [0, 1]. Suppose
that ir,β (K) > 1

2 for all K ∈ C ′
, where C

′
is the set

of fuzzy formulas with respect to ir,β , joined to the el-
ements of C. Then,

ir,β ((∧A∈XA)⇒ (∧B∈YB)) >
1

2
.

Theorem 4. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an
attribute on the universe of discourse Ui, i ∈ I . Let
C be some set of vague functional dependencies on
{A1, A2, ..., An}. Suppose that X θ→V Y is some
vague functional dependency on {A1, A2, ..., An}.
The following two conditions are equivalent:

(a) Any vague relation instance on
R (A1, A2, ..., An) which satisfies all dependencies in

C, satisfies the dependency X θ→V Y .
(b) Let r be any two-element vague relation in-

stance on R (A1, A2, ..., An), and β ∈ [0, 1]. Suppose
that ir,β (K) > 1

2 for all K ∈ C ′
, where C

′
is the set

of fuzzy formulas with respect to ir,β , joined to the el-
ements of C. Then,

ir,β ((∧A∈XA)⇒ (∧B∈YB)) >
1

2
.

Proof. Suppose that c that appears in Theorem 2 is
given by X θ→V Y .

Now, the assertion is an immediate consequence
of Theorem 2 and Theorem 3.

This completes the proof.

8 Applications
Example 1. Let R (A,B,C,D,E) be a relation
scheme on domains U1, U2, U3, U4, U5, where A is
an attribute on the universe of discourse U1,..., E is
an attribute on the universe of discourse U5. Suppose
that the following vague functional dependencies on
{A,B,C,D,E} hold true.

{A,B} θ1→V C,

B
θ2→VD,

{C,D} θ3→VE.

Then, the vague functional dependency {A,B}
θ→V E on {A,B,C,D,E} holds also true. Here, θ =
min {θ1, θ2, θ3}.

Proof. I One applies the inference rules VF1-VF7.

Proof. II Follows immediately from Theorem 4.

9 Remarks
For analogous results in the case of fuzzy functional
(and fuzzy multivalued) dependencies, see, [6], [7],
[8], [9].
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